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Abstract. This article performs a geometrical analysis of the efficient outcome set Y~ of a multiple 
objective convex program (MLC) with linear criterion functions. The analysis elucidates the facial 
structure of Y~ and of its pre-image, the efficient decision set XE. The results show that YE often has 
a significantly-simpler structure than Xe. For instance, although both sets are generally nonconvex 
and their maximal efficient faces are always in one-to-one correspondence, large numbers of extreme 
points and faces in X~ can map into non-facial subsets of faces in YE, but not vice versa. Simple 
tests for the efficiency of faces in the decision and outcome sets are derived, and certain types of 
faces in the decision set are studied that are immune to a common phenomenon called "collapsing." 
The results seem to indicate that significant computational benefits may potentially be derived if 
algorithms for problem (MLC) were to work directly with the outcome set of the problem to find 
points and faces of YE, rather than with the decision set. 
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1. Introduction 

The multiple objective mathematical programming problem involves the simulta- 
neous maximizat ion of  p />  2 noncomparable criterion functions over a nonempty 
set. The concept of  an efficient solution has played a useful role in the analysis and 
solution of  this problem. In particular, many of  the approaches for analyzing and 
solving this problem generate either all or at least some of  the efficient solution 
set. In this way, inherent tradeoffs in the problem are revealed, and most-preferred 
solutions can be sought. Included among these types of  approaches, for instance, 
are the vector  maximizat ion approach, interactive approaches, and several oth- 
ers (see, for  instance, the books and general surveys by Cohon [10], Evans [21], 
Goicoechea et al. [24], Kuhn and Tucker [29], Luc [32], Ringuest [36], Rosenthal 
[38], Sawaragi et al. [39], Stadler [40], Steuer [42], Yu [48,'49], Zeleny [51] and 
references therein). 



232 H.P. BF_~SON 

Adopting the notation of Geoffrion [23], we may represent a multiple objective 
mathematical programming problem (M) by 

VMAX: f (z ) ,  subject to x E X, 

where  

f (x)  =-[f l (x) ,  fx(x),..  ., fp(X)], 

X is a nonempty set in IR n, and, for each j E { 1 , 2 , . . . ,  p}, fj : X -+ IR. A point 
is said to be an efficient solution (or decision) for problem (M) when g E X and 

there exists no point z E X such that f (z )  >! f(~) and f(x)  # f(-~). The set X 
is called the decision set for problem (M), and the set XE of all efficient decisions 
is called the efficient (or nondominated) set for problem (M). In this article, we 
will. also often refer to XE as the efficient decision set. Problem (M) is said to be 
a multiple objective convex (linear) programming problem when each objective 
function fj is concave (linear) and the decision set X is convex (polyhedral). 

Let Y denote the set f ( X )  = {f(x)lx E X},  and let 

Y<" = {V E gtPly <. f(x)  for some z E X}.  

The set Y = f ( X )  is called the outcome set (or image) of X under f. The set Y-< 
and generalizations of this set have been used to good effect by many researchers, 
including, for instance, Benson [4], Bitran and Magnanti [8], Dauer and Saleh [17], 
and Yu [47]. Both the outcome set Y and the set Y<- take the natural viewpoint of 
considering f to be a mapping from IR n into R p. In particular, in outcome space, if 
we define the efficient sets YE and Y~ by 

YE = {Y E Ylthere is no V E Ysuch that y ) ~ and y # ~} (1) 

and 

Y~ = {ff E Y'<ithere is no y E Y'<such that V i> ffand y # ~}, 

respectively, then XE is the pre-image under f of lie = Y~. We will refer to 
YE = Y~ as the efficient outcome set for problem (M). 

Mathematically, the task of generating XE or YE or significant portions of these 
sets for problem (M) is a difficult global optimization problem. This is because 
XE and YE are, in general, nonconvex sets, even in the case of multiple objective 
linear programming. Confounding the situation further is the fact that neither XE 
nor YE is given in the traditional mathematical programming format as a system 
of functional inequalities. 

Largely because of the need for methods for generating XEOr portions of XE, 
researchers have been studying the mathematical structure of XE for many years. 
During the course of this study, these researchers realized that many of the key 
mathematical properties of XE can be derived and understood more easily by 
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focusing on the outcome set Y (or on Y~<) and on the efficient outcome set }rE 
instead of on X and XE. Numerous instances of the beneficial use of this approach 
can be cited. For example it has been used in studies concerning the existence 
of points in XE [4-5, 8-9, 11, 19, 25, 28, 44, 48], the "domination property" of 
XE [6, 26, 31, 44], the connectedness of XE [8, 30, 33, 45], the density of the 
"properly" efficient points in XE [2, 8, 27, 46-47], the stability of XF_, [34, 39, 41, 
43], and the contractibility of XE [32]. 

In recent years, some notable computational progress has been made, in par- 
ticular, for the multiple objective linear programming problem (MLL) by using 
the outcome set approach. Dauer [13] and Dauer and Liu [15], for example, have 
devised a simplex-like procedure for problem (MLL) that generates all of the 
extreme points and edges of YE rather than those of XE. Since in problem (MLL), 
YE usually has a significantly-simpler structure with many fewer extreme points 
and edges than XE, these procedures offer great practical promise. For exa~n, ple, 
Dauer and Liu [15] have estimated for a certain water rosources planning model 
that their method might require only slightly more than one-eighth of the com- 
putational effort of a typical decision set-based method for generating all of the 
efficient extreme points of X. 

These first outcome set-based computational procedures were to a significant 
extent made possible by some fundamental geometrical results that Dauer [ 12] had 
derived earlier for multiple objective linear programs. Motivated by a desire to 
avoid the large cost of describing the efficient set in decision space, Dauer derived 
several geometrical properties of the efficient set in outcome space. For instance, 
he showed when and by how much the dimension of a face of XE is reduced when 
the face is mapped into YE by problem (MLL). He gave sufficient conditions for 
this reduction to be zero, and he showed how faces of XE can "collapse" in YE into 
non-facial subsets of YE. In these and similar ways, he helped to clarify how the 
linear mapping of XE onto YE given in problem (MLL) can considerably simplify 
the structure of the efficient set, reduce its dimension, and decrease the number of 
extreme points and faces that it contains. 

In this article we will perform a geometrical analysis of the efficient outcome set 
of a multiple objective convex programming problem (MLC) with linear objective 
functions. This analysis is to a great extent motivated by a desire to provide some 
foundations for developing procedures for problem (MLC) that generate points in 
lie rather than in XE. 

The analysis will show that for problem (MLC), as in the linear case, the 
efficient outcome set often has a significantly-simpler structure than the efficient 
set in decision space. For example, we will show that in many cases of problem 
(MLC), the efficient decision set must contain at least as many extreme points as 
the efficient outcome set. More generally, we will show that although the maximal 
efficient faces of the decision and outcome sets in problem (MLC) are always 
in one-to-one correspondence, large numbers of non-maximal efficient faces in 
decision space can map into non-facial subsets of the efficient outcome set, but not 
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vice-versa. Furthermore, we will show that the dimensions of the efficient faces 
in the decision set always exceed or equal the dimensions of their images in the 
efficient outcome set, even when these images are not faces of the outcome set. 

On the other hand, the analysis will also show that in certain special cases of 
problem (MLC), the efficient decision and outcome sets can sometimes display 
characteristics that partially contradict the notion that, of the two sets, the efficient 
outcome set has the simpler structure. In particular, we will show for some cases 
of problem (MLC), including for some multiple objective linear programs, that the 
number of extreme points in the efficient decision set can actually be smaller than 
the number of extreme points in the efficient outcome set. 

By focusing on Y~ and on Y~, many (but not all) of the results in this article 
can be extended to the more general multiple objective convex program (MCC) 
with concave criteria and a convex decision set. However, we shall not stop here 
to present these extensions. 

The organization of this article is as follows. In Section 2 we give some notation 
and preliminaries. Section 3 elucidates the fundamental facial structure of the 
efficient outcome set of problem (MLC). It shows that the efficient outcome set is 
a union of relative interiors of faces of the outcome set. A similar result is shown 
to hold for the efficient decision set. The section also shows the relationships that 
can exist between the numbers of efficient extreme points in the decision set and 
the outcome set and between the numbers and dimensions of the efficient faces 
in these two sets. In Section 4 we derive simple tests for the efficiency of faces 
in the decision and outcome sets, and we show that the sets of maximal efficient 
faces in decision and outcome space are in one-to-one correspondence. We also 
analyze a phenomenon called collapsing [12] in this section. Some conclusions 
and suggestions for further research are given in Section 5. Examples form a 
fundamental part of the analysis and are therefore given throughout the article. 

2. Notation and Preliminaries 

Assume henceforth that each criterion function fj  in problem (M) is a linear 
function defined on IR ~ and that X is convex as well as nonempty in IR n. In this 
case, problem (M) is a multiple objective convex programming problem with linear 
objective functions. We will denote this problem as problem (MLC). In contrast 
to multiple objective linear programs, both the decision set X and the outcome set 
Y = f ( X )  of problem (MLC) are, in general, nonpolyhedral sets. 

We will be using the following notations and terms throughout the remainder 
of the article. Assume that q >/ 1 is an integer. 

For any real numbers a and/3 satisfying a </3,  the sets given by {x E IRla ~< 
x ~</3} and {x E IR[a < x </3} will be denoted [a,/3] and (a,/3), respectively. 

For any set U C_ IRq, (aft U) and (sub U) will denote the affine hull of U and the 
subspace generated by U, respectively. If, in addition, V C__ Nq, then the difference 
U \ V  will denote {x E IRqlx E U, x r V}.  
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For any convex set U c_ ~q, the relative interior and the relative boundary of 
U will be denoted (ri U) and (rb U), respectively. Recall that if, in addition, U is 
nonempty, then a point u ~ E U is called an extreme point of U if u ~ = Au I + 
(1 - ),)u 2 for some u 1 , u 2 E U and some A E (0, 1) implies that u 1 = u 2 = u ~ 
More generally, a face of U is a convex subset H of U such that for any closed line 
segment L = {x E ~q[x = Ax 1 -t- (1 - A)x 2 for some A E [0, 1]} connecting two 
points x 1 and x 2 of U that satisfies (ri L) N t i  ~ ~, both x ~ and x 2 must lie i n / / .  
Additionally, the dimension of U is the dimension of (aft U). We will denote the 
set of all extreme points and the dimension of a nonempty convex set U in R q by 
Uex and dim U, respectively. 

Let D be a p • n matrix of real numbers. Without loss of generality, we will 
represent problem (MLC) henceforth as 

VMAX" Dx,  subject to x E X, 

where the rows of D contain the coefficients of the p linear objective functions of 
the problem. The outcome set Y for problem (MLC) is then given by Y = D[X], 
where for any set Z E IR ~, D[Z] denotes {y E lI~P[y = D z  for some z E Z}. 
From Rockafellar [37], Y is a nonempty convex set in IR p. Our main goal is to 
geometrically analyze the efficient outcome set YE of problem (MLC), where YE 
is given by (1). As part of this analysis, since YE = D[XE], we will also study the 
geometry of the efficient decision set X E  of problem (MLC) and, in particular, the 
effects of the mapping D on XE.  

To conclude this section, we present a result that will be used throughout the 
article. The result confirms that YE = D[XE] and can be easily proven from the 
definitions. 

PROPOSITION 2.1. 

(a) For any yO E }rE, i f  x ~ E X satisfies Dx  ~ = yO, then x ~ E XE.  
(b) For any x ~ E XE, i f  y ~ = Dx  ~ then y~ E ME. 

3. F u n d a m e n t a l  F a c i a l  S t r u c t u r e  

Since Y = D[X] is a nonempty convex set in R p, we know from convex analysis 
that the collection T of all relative interiors of nonempty faces of Y is a partition 
of Y, i.e., the sets in T are disjoint and their union is Y (cf., e.g., Rockafellar [37]). 
Our first result will show that although YE C_ Y is not generally a convex set, a 
similar partition TE for YE exists. The key to deriving this result comes from the 
following theorem. 

THEOREM 3.1. Let G be a face o f Y .  l f  (ri G) contains a point yO E ]rE, then 
G C_YE. 
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Proof. Let ffl E G. If yl = yO, then yl EYE. Otherwise, since y~ E (ri G), 
we may choose a scalar 0 > 1 such that yl + O(yO _ yl) E G [37, p. 47]. Let 

= yl + O(yO _ yl ) .  Then if~ = (1 - 1)yl + ~ .  Since 0 > 1, this implies that 
y~ is a strict convex combination of yl and ft. Assume that 9 E Y satisfies 9 ) yl. 
Let y be defined by 

( 0 )  1 y =  1 -  9 + ~ Y .  (2) 

Then y is a strict convex combination of 9 E Y and ff E G C_ Y, so that y E Y. 
Furthermore, since 9 >1 yl and ( 1 - l )  > 0, (1 - 1)9 + i v  ) (1 - 1)yl + ~ff. From 
(2) and the expression for if~ derived earlier, this inequality states that y /> y~ 
Since if~ E IrE and y E Y, y = y~ must hold. It follows that 

1 (1 1) ffl 1 

Since (1 - ~) > 0, this equality implies that 9 = yl. Because 9 was assumed to 
be any element of Y for which ~) ) yl holds, it follows that yl E YE, so that the 
proof is complete. [] 

From Theorem 3.1, if G is a face of Y and some point in (ri G) belongs to YE, 
then all of (ri G) belongs to YE and all points of (rb G) contained in G belong to 
YE as well. Notice that these conclusions hold regardless of whether G is a closed 
set, an open set, or neither of these types of sets. Theorem 3.1 generalizes a result 
in [50] that applies only to multiple objective linear programs. 

From Theorem 3.1, we have the following fundamental result for YE. The proof 
is an easy exercise. 

COROLLARY 3.1. Let TE denote the collection of all relative interiors (ri G) of 
faces G o f Y  that satisfy (ri G) C YE. Then TE is a partition of YE, i.e., the sets 
in TE are disjoint and their union is YE. 

Notice that TheOrem 3.1 also implies that YE is a union of faces of Y, where 
the elementsiri this union need not be disjoint and are not necessarily open sets. 
Furthermorer since Y is itself a face of Y, Theorem 3.1 also implies the following 
result. (See Lemma 7.2 (i) in [48] for a related result). 

COROLLARY 3.21 If  (ri Y)  fl YE r O, then every point in Y belongs to YE. 
Otherwise, YE C_/(rb Y). 

Proof. If (ri Y)  fq YE r O, then, by setting G equal to Y in Theorem 3.1, we 
conclude that Y C YE. If (ri Y)  N YE = 0, then, by definition, YE C_ (rb Y)  must 
hold. ,J [] / /  

/ 
/ 

The following are counterparts in decision space to Theorem 3.1 and its two 
corollaries. These results can be proven by using arguments analogous to those 
used to show the three outcome space results. 
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THEOREM 3.2. Let F be a face of X.  If (ri F) contains a point x ~ C XE, then 
F C X E .  

COROLLARY 3.3. Let SE denote the collection of all relative interiors (ri F) of 
faces F of X that satisfy (ri F) C_ XE. Then SE is a partition of XE, i.e., the sets 
in S E are disjoint and their union is X E. 

COROLLARY 3.4. If  (ri X )  M XE 7 ~ r then every point in X belongs to XE. 
Otherwise, X E  C_ (rb X) .  

For the special case when problem (MLC) is a multiple objective linear program, 
i.e., the convex set X is polyhedral, it has been observed empirically that one can 
typically expect to encounter fewer efficient extreme points and faces in YE than 
in XE (cf., e.g. [12, 15, 20, 22]). Moreover, the dimensions of efficient faces are 
generally much smaller in YE than in XE. The latter has been attributed, at least in 
part, to the fact that the dimension p of the outcome space is generally smaller than 
(and often much smaller than) the dimension n of the decision space [12]. In the 
remainder of this section, we shall formally analyze the geometrical issues raised 
by these observations, but in the more general setting of the multiple objective 
convex program (MLC). 

THEOREM 3.3. Suppose that in addition to being nonempty and convex, X is 
a compact set. Then for any if~ E }rex, there exists a point x ~ E Xex such that 
Dx o = yO. 

Proof. Assume that y~ E Yex. Suppose, to the contrary, that if Dx = y~ for 
some x E X,  then x r Xex. Choose any point ~- in X such that D g  = y~ Then, 
by assumption, g r Xcx. Since X is a compact, convex set, this implies that there 
exist points x l, x2 , . . . ,  x q E Xex and scalars ~1, ~2 , . . . ,  ~q > 0 that sum to one 
such that 

"~ = Z OzjXJ, 
j=l 

where q ) 2 [37]. Since D g  = yO, this implies that 

q 

y~ =Z~jy  j, 
j=l 

(3) 

where, for each j = 1 , 2 , . . . , q , y  j = Dx j E Y.  For each j = 1,2, . . . , q ,  by 
assumption, since xJ C Xex, DxJ r y~ must hold. Therefore, yJ r y~  = 
1 ,2 , . . . , q .  

Since y~ E Yex, it is easy to see that Y \ { y ~  is a convex set. For each j = 
1 , 2 , . . . , q ,  since y3 C Y and yJ r yO, it follows that yJ C y\{yO}. Therefore, 
any convex combination of the points yJ, j = 1 ,2 , . . . ,  q, must lie in Y\{y~ But 
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since Y is a convex set and the scalars ~ j , j  = 1 , 2 , . . . ,  q, are positive and sum to 
one, this contradicts (3), and the proof is complete. [] 

From Proposition 2.1 and Theorem 3.3, for any element y~ of the efficient outcome 
set YE of problem (MLC) that is an extreme point of Y, there will exist an element 
x ~ of the efficient decision set X E  that is an extreme point of X such that Dx ~ = y~ 
provided that X is compact. This implies that when X is compact, the number of 
efficient extreme points of X is guaranteed to be at least as great as the number 
of efficient extreme points of Y. This verifies empirical observations that have 
been made for the special case of multiple objective linear programs with bounded 
decision sets. 

REMARK 3.1. The point x ~ in Theorem 3.3 need not be unique. In fact, large 
numbers of extreme points x of X may be mapped by D into a single extreme 
point y ~ E Y, even in the case when X and Y are compact polyhedra. Furthermore, 
from Proposition 2.1, if y~ E Y E ,  then each of these extreme points x will belong 
to XE. To illustrate these possibilities, consider the following simple example. 

EXAMPLE 3.1. Let 

X = {x E ]~[0 <, zj  ,< 1 , j  = 1 , 2 , . . . , n } ,  

and let D be the 2 • n matrix whose first two columns form the 2 • 2 identity 
matrix and whose remaining columns contain all zeroes. Then Y is a unit square 
in ~2, and (yo)T = (1, 1) is an efficient extreme point of Y. In this case, any 
point x 6 X with Xl = x2 -~ 1 satisfies Dx = yO. Notice, in particular, that 2 n-2 
efficient extreme points x of X satisfy Dx = yO. If n = 32, for instance, then over 
one billion efficient extreme points of the feasible decision set X are mapped by 
D into the single extreme point yO of the efficient outcome set! 

REMARK 3.2. Example 3.1 shows that impressively-large numbers of efficient 
extreme points of X may be mapped by D in problem (MLC) onto the same effi- 
cient extreme point of Y. In addition, similarly-large numbers of efficient extreme 
points of X may map into non-extreme efficient points of Y. The next example 
demonstrates this possibility. 

EXAMPLE 3.2. Consider again ExamPle 3.1, but with D replaced by the 2 • n 
matrix whose entries in row one are all equal to 1.0 and in row two are all equal 
to -1 .0 .  Then Y is the closed line segment in ]R 2 connecting the origin and the 
point ( n , - n ) ,  and YE = Y .  In this case, (2 n - 2) of the 2 n efficient extreme 
points of X are mapped by D into non-extreme efficient points of Y. If n = 30, 
for example, this implies that over one billion efficient extreme points of X map 
into non-extreme efficient points of Y. 
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REMARK 3.3. The assumption that X is compact cannot be deleted from Theorem 
3.3. This implies that when X is not compact, the efficient outcome set may contain 
more extreme points than the efficient decision set. This phenomenon can occur 
even in multiple objective linear programming. The next two examples illustrate 
these comments. 

EXAMPLE 3.3. Let C = {x E R3I 0 ~ zj  ~< 1 , j  = 1,2,3}, and let X be the 
non-closed convex set obtained from C by deleting the eight extreme points of C. 
Define D to be the 2 • 3 matrix whose first two columns form the 2 x 2 identity 
matrix and whose last column is the zero vector in IR 2. Then Y contains four 
extreme points and one efficient extreme point, but X contains no extreme points 
whatsoever. In particular, none of the pre-images under D of the efficient extreme 
point (y~ = ( 1, 1 ) of Y is an extreme point of X,  and YE contains more extreme 
points than XE. 

EXAMPLE 3.4. Let X = {x E R3I 0 ~< Xl,X2 ~< 1}, and let D be defined as 
in Example 3.3. Then X is a nonempty, unbounded polyhedral set, and problem 
(MLC) is a multiple objective linear program. Notice that although the outcome 
set contains four extreme points and one efficient extreme point, the decision set 
X is devoid of extreme points. As in Example 3.3, then, in this example none of 
the pre-images under D of the efficient extreme points of Y is an extreme point of 
X,  and YE contains more extreme points than XE. 

THEOREM 3.4. Let G be an arbitrary face of  Y.  Then F = {x E X I D x  E G} is 
a face of  X ,  and dim F / >  dim G. 

Proof. To show that F is a face of X,  we will use a proof by contradiction. 
Towards this end, suppose that F is not a face of X.  By definition, since G is a 
face of Y, G is a convex set. Therefore {x E IRn[Dx E G} is also a convex set 
[37]. Since F = X f~ {x E IRnIDx E G}, and the intersection of two convex 
sets is again a convex set, F is a convex subset of X.  This and the assumption 
that F is not a face of X imply, by definition of a face, that we may choose two 
points u, v E X ,  at least one of which is not in F,  such that there exists a point q 
in the relative interior of the closed line segment connecting u and v that satisfies 
q E F .  

Since q lies in the relative interior of the closed line segment connecting u 
and v, we may choose a scalar 0 E (0,1) such that q = O u + ( 1 -  O)v. It 
follows that Dq = ODu + (1 - O)Dv, which, by the fact that q E F,  implies that 
O1)u + (1 - O)Dv E G. Since G is a face of Y and the points Du and Dv belong 
to Y, this implies that both Du and Dv must belong to G. From this and the fact 
that both u and v belong to X,  we conclude that both u and v belong to F.  But 
this is untenable, since u and v were chosen so that at least one of them is not a 
member of F .  This implies that F must be a face of X.  

To complete the proof, we will show that it is impossible for dim G to exceed 
dim F.  Towards this end, suppose that dim G = k. Then we may choose k + 1 
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affinely independent points g j E G, j  --- 0, 1 , . . . , k .  If dim G were to exceed 
dim F,  then every set of k + 1 points in F would necessarily be affinely dependent. 
In particular, any k + 1 points f J , j  = O, 1,. . . ,  k, in F satisfying DfJ = g j for 
each j would be affinely dependent. However, it is easy to see by using simple 
algebra that this would imply that the points if J, j = O, 1,. . . ,  k, are not affinely 
independent, which is a contradiction. Thus, dim G cannot exceed dim F,  and the 
proof is complete. [] 

REMARK 3.4. Theorem 3.4 states that given any face G in the outcome set Y of 
X under D, the set of all points in X that are mapped by D into G form a face F 
of X whose dimension is at least as great as the dimension of G. Unfortunately, 
however, the reverse is not true, i.e. not every face of X is mapped by D onto a 
face of Y. In particular, let F be a face of X that maps onto a face G = D [F] of 
Y. Then there can be many faces of X that are strict subsets of F that are mapped 
by D onto convex subsets of G that intersect the relative interior of G but are not 
faces of Y. Furthermore, the dimensions of F and of these strict subsets of F can 
far exceed the dimension of G. Put another way, while some faces F of X map 
onto faces G of Y, there may be much larger numbers of faces F of X that are 
strict subsets of these types of faces that map into non-facial convex subsets of 
Y. Furthermore, the dimensions of the faces F and of these sorts of strict facial 
subsets F of F can far exceed the dimensions of the facial images G in Y of the 
faces F.  These observations hold for efficient faces as well, even in the case where 
problem (MLC) is a multiple objective linear program. 

To illustrate Remark 3.4, consider Example 3.2. Let G denote the closed line 
segment in IR 2 that connects the origin and the point (n, - n ) .  Then in this example, 
G C_ YE and, since G = Y, G is a face of Y. Notice that the dimension of G is one. 
By Proposition 2.1 and Theorem 3.4, the set F = {x C X[Dx E G} is an efficient 
face of X of dimension one or more. In fact, in this case, F equals X itself, so that 
it has dimension n, which, of course, can far exceed one. Notice that every strict 
subface of F is efficient. Furthermore, except for the two efficient extreme point 
subfaces given by { (0 ,0 , . . . , 0 )  T} C_ IR n and {(1, 1 , . . . ,  1) :r} C_ IR ~, every one 
of these efficient subfaces F maps into an efficient non-facial subset of G = Y. 
These non-facial subsets of G are convex sets. In particular, each one is either a 
single point in the relative interior of the line segment G or a closed line-segment 
subset of G other than G itself. Notice further that extremely-large numbers of 
efficient subfaces of the type F exist. For instance, there are n2 ~- 1 efficient edges 
of F alone that are subfaces of this type. Finally, observe that the dimensions of 
the efficient subfaces of F of this type vary from 0 to (n - 1). For n = 30, for 
instance, these observations imply that although YE is a simple one-dimensional 
line segment in IR 2 consisting of just three efficient faces, XE consists of billions 
of efficient faces of dimensions as large as 30, all but three of which are mapped 
under D into non-facial subsets of YE. 
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REMARK 3.5. Notice in the proof of Theorem 3.4 that to show dim F / >  dim G, 
only the convexity of F and of G = D [F] were used. It follows that the dimension 
of the image of any convex set S C_ 11~ n under D is never greater than dim S. 

4. Complete Efficiency, Maximal Faces and Collapsing 

Theorems 3.1 and 3.2 immediately imply the following result. 

PROPOSITION 4.1. Let F and G be arbitrary faces of X and of Y, respectively. 
Then F C_ XE if and only if (ri F) contains a point x ~ E XE, and G C_ YE if and 
only if (ri G) contains a point yO EYE. 

In a moment we shall use Proposition 4.1 to help find conditions under which the 
image of an efficient face of X under D is an efficient face of Y. But first let us 
study some more direct uses of the proposition. 

DEFINITION 4.1. [3, 7]. The multiple objective convex program (MLC)is said 
to be completely efficient when X = XE. 

Although complete efficiency seems to be a relatively uncommon phenomenon, 
the issue of how frequently it occurs has yet to be addressed [3]. Notice from 
Definition 4.1 and Proposition 2.1 that problem (MLC) is also completely efficient 
if and only if Y = ME. 

In problem (MLC), since X and Y are themselves faces of X and Y, respective- 
ly, Proposition 4.1 gives necessary and sufficient conditions not only for faces of 
X and of Y to be efficient, but also for problem (MLC) to be completely efficient. 
Therefore, Proposition 4.1 has a number of potential uses. It would thus be advan- 
tageous to use Proposition 4.1 to derive computational tests for the efficiency of a 
face of X or of Y. Various types of such tests can be envisioned. One such test is 
provided in the next result. This test relies on the solution of a convex programming 
problem similar to problems used in the past to test for the efficiency of individual 
points, rather than entire faces (cf., e.g., 4-5, 19, 21, 42 and references therein). 

THEOREM 4.1. Assume that G is a face of Y, and let yO be an arbitrary point in 
(ri G). Then G C YE if and only if the optimal value of the convex programming 
problem 

sup(e , y ) - ( e , y~  s . t .y~>y ~ y E Y  

equals O, where e E ]R p denotes the vector of ones and (., .) denotes the inner 
product. 

Proof. The proof follows easily from Proposition 4.1. [] 

Notice, in particular, that if G = Y in Theorem 4.1, then the theorem provides a 
test for the complete efficiency of problem (MLC). A result analogous to Theorem 
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4.1 can be easily derived which provides a test for the efficiency of an arbitrary 
face of X.  Of course faces of X or Y need not be closed. In such cases, extra 
caution should be taken in using these face efficiency tests. 

The concept of maximal efficiency has played a useful role in generating efficient 
faces in the decision sets of multiple objective linear programs [1, 18, 35, 48, 50]. 
The following definition extends this concept to the multiple objective convex 
program (MLC). 

DEFINITION 4.2. A nonempty face F of set X (respectively, G of set Y) in 
problem (MLC) is called maximally efficient when it is efficient and no other 
efficient face F of X (resp., G of Y) exists such that F C_ F and F r F (resp., 
G C_GandG # G). 

The next three results show that the notion of maximal efficiency also plays a key 
role in understanding the geometrical relationships between XE and YE for both 
the multiple objective linear programming problem and problem (MLC). 

THEOREM 4.2. Suppose that F is a maximally efficient face of X.  Then G = 
{y E YlY = Dx for some x E F} is a maximally efficient face of Y. 

Proof See Appendix. 

Theorem 4.2 gives a sufficient condition for the image of an efficient face F of X 
under D to be an efficient face of Y. The condition is that F is maximally efficient 
in X. This condition, however, is not necessarily satisfied by every efficient face 
of X whose image under D is an efficient or maximally efficient face of Y. The 
following example demonstrates this. 

EXAMPLE 4.1. Let D be defined as in Example 3.3, and let X = {x E ~31x2 + 
x 2 ~< 1; Xl, x2~ x3/> 0}. Thenin problem(MLC), theimage under D of the efficient 
face of X consisting of the extreme point (x ~ = (1,0, 0) is the efficient extreme 
point (y~ = (1,0) of Y, which is a maximal efficient face of Y. Yet the efficient 
face F = {x ~ in X is not maximally efficient, since T is a strict subset of the 
efficient face F of X given by 

F = {x E ~3lx = (1,0, a)  for some a/> 0). (4) 

THEOREM 4.3. Suppose that G is a maximally efficient face of Y. Then F = 
{x E XIDx  E G} is a maximally efficient face of X.  

Proof From Proposition 2.1 and Theorem 3.4, F is an efficient face of X. 
Suppose, to the contrary, that F is not a maximally efficient face of X. Then for 
some other efficient face T of X, F C_ T and F ~ F .  We may assume without loss 
of generality that F is a maximally efficient face of X. From Theorem 4.2, this 
implies that G = {y E YIy = Dx for some x E F}  is an efficient face of Y. Since 
F C_ T and F ~ F ,  we may choose a point ~ E F \ F .  Then, from the definitions 
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of G and F,  D g  E G\G.  Furthermore, since F C_ F,  these definitions also imply 
that G _C G. The latter two conclusions imply that G _ G and G # G. But since 
G is an efficient face of Y, these conclusions contradict that G is a maximally 
efficient face of Y, so that the proof is complete. [] 

From Theorems 4.2 and 4.3, we obtain the following result. 

THEOREM 4.4. The mapping D induces a one-to-one correspondence between 
the maximally efficient faces of the decision set X and the outcome set Y of problem 
(MLC). 

Proof. Let F be a maximally efficient face of X. Then, from Theorem 4.2, 
G = {y ~ Y lY = Dx for some x E F} is a corresponding maximally efficient face 
of Y. By applying Theorem 4.3 to G, we obtain that the set F = {x E XIDx E G} 
is a maximally efficient face of X corresponding to G. Notice that F _C F.  Since 
F is a maximally efficient face of X and F is an efficient face of X,  this implies 
by Definition 4.2 that F = F,  so that the theorem is established. [] 

Dauer and Gallagher [14] have very recently shown Theorem 4.4 for the special 
case where X and Y are polyhedra, i.e., where problem (MLC) is a multiple 
objective linear program. 

Theorems 4.2-4.4 establish that an organized relationship exists between the 
sets of faces in the efficient decision set and in the efficient outcome set of problem 
(MLC). In addition, they provide a structure for constructing algorithms to generate 
all or parts of these sets. For instance, they suggest that to construct algorithms for 
generating all of YE, it would be beneficial to view the task as one of generating all 
of the individual maximal faces Of YE. By generating all of these faces, bookkeeping 
tasks could potentially be simplified, and individual maximal faces in XE could 
be readily identified as pre-images under D of the maximal faces of YE. 

For the special case of multiple objective linear programming with nonempty 
compact decision sets (i.e. for the case where X is a nonempty compact polyhe- 
dron), Dauer [12] found it useful to define the notion of "collapsing" to study the 
effects of the mapping D on faces of XE. The definition of collapsing used by 
Dauer is as follows. 

DEFINITION 4.3. [12]. Let X be a nonempty compact polyhedron. Then a face F 
of X is said to collapse underD when there exists a subface F _C F of X, F # F,  
such that dim D [F] = dim D [F]. 

The assumption in Definition 4.3 that X is a compact polyhedron is not essential 
to the concept of collapsing. Therefore, we will assume henceforth that Definition 
4.3 is also valid when X is an arbitrary nonempty convex set in IR n. 

Notice from Definition 4.3 and [37] that when a face F of X collapses under D, 
there exists some strict subface F of F (which must necessarily satisfy dim F < 
dim F)  such that D[F] C D[F], but dim D[F] = D[F]. The collapsing of efficient 
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faces in problem (MLC) is quite common, even when problem (MLC) is a multiple 
objective linear program [12]. Furthermore, maximally efficient faces in XE are 
not immune to collapsing. As an illustration of the latter point, notice that the 
face F defined by (4) is a maximally efficient face of X in Example 4.1, but 
since F = {(1,0,  0)} is a strict (efficient) subface of F for which dim D ( F )  = 
dim D(F) = 0, F collapses under D in this example. 

We will identify some of the types of faces of X (and hence of XE) that are 
guaranteed not to collapse under D. Towards this end, consider the following 
definition. 

DEFINITION 4.4. A nonempty face F of X in problem (MLC) is said to be 
algebraically nondegenerate with respect to D when 

Dx = O, x C (sub F) 

imply that x = 0. 

Definition 4.4 generalizes a concept introduced for multiple objective linear pro- 
grams by Philip [35]. Notice that if F is algebraically nondegenerate with respect to 
D, then so is any nonempty strict subface T C F of X.  The next result generalizes 
a result of Dauer [ 12]. 

THEOREM 4.5. An algebraically nondegenerate face of X with respect to D 
cannot collapse under D. 

Proof. See Appendix. 

Since algebraically nondegenerate faces cannot collapse, yet collapsing is often 
observed empirically, one tentatively concludes that in practice, only a minority 
of faces is algebraically nondegenerate. Some additional theoretical justification 
for this tentative conclusion is provided by the next result (cf. [12] for the linear 
case). 

THEOREM 4.6. A nonempty face F of X is algebraically nondegenerate with 
respect to D if and only if dim D[F] = dim F. 

Proof. See Appendix. 

REMARK 4.1. Although algebraic nondegeneracy is a sufficient condition for 
guaranteeing that collapsing does not occur, it is not a necessary one. To demonstrate 
this, consider the following example. 

EXAMPLE 4.2. Let D be defined as in Example 3.3, and let X = {x E lR31x 2 + 
x 2 ~< 1,0 < x3 < 2}. Then the set XE consists of a union of an infinite number of 
one-dimensional maximal efficient faces, each of the form 

FO = {x E IR3lXl = O, x2 = (1 - 02)1/2, X3 E (0 ,2)) ,  
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where 0 E [0, 1]. All of the faces Fo, 0 E [0, 1], are algebraically degenerate 
with respect to D. This is because for each 0 E [0, 1], ~- = (0, 0, 1), for instance, 
belongs to (sub Fo) and satisfies D g  = 0. Yet none of these faces collapses under 
D, because none contains a strict subset that is a face of X. 

5. Some Conclusions and Suggestions for Further Research 

This article has presented a geometrical analysis of the efficient outcome set YE 
of problem (MLC). The analysis was motivated to a great extent by a desire to 
provide some foundations for developing algorithms for generating all or parts 
of YE. The results seem to indicate that, as in the case of multiple objective 
linear programming, great computational benefits can be expected to accrue if 
multiple objective algorithms for problem (MLC) were to work directly with the 
outcome set Y to find points and faces of YE rather than with the decision set 
X.  Furthermore, the results also seem to indicate that such algorithms will benefit 
computationally by focusing on the generation of maximal efficient faces of YE. 
Given such faces, corresponding maximal efficient faces in the decision set X 
can then be identified. A potentially-fruitful topic for further research, then, is the 
development of algorithms for problem (MLC) of this type. 

As mentioned in Section 1, by focusing on Y~< and on Y{, many (but not 
all) of the results given in the article for problem (MLC) can be extended to 
the more general multiple objective programming problem (MCC) in which the 
criteria are arbitrary concave functions on X.  Another topic for further study, then, 
is the geometrical structure of the efficient decision and outcome sets of problem 
(MCC). 

A third suggestion for further research is to study in more detail the effects 
that the linear mapping D has on an efficient face F of X in problem (MLC). 
In particular, given dim F,  it would be of interest to have a means of precisely 
calculating dim D [F]. In addition, it would be valuable to be able to characterize 
when F will and will not collapse under D. Such knowledge coulcl be valuable in 
computational contexts. For instance, prior knowledge that dim D [F] is relatively 
small for certain efficient faces F of X could indicate to a decision maker that it is 
not worthwhile to explicitly generate either the face F or its image D[F] in YE. 

6. Appendix 

Proof of Theorem 4.2. From Proposition 2.1, G C_ }rE. To show that G is a 
face of Y, assume, to the contrary, that it is not. Notice that since F is a nonempty 
convex subset of X, G = D[F] is a nonempty convex subset of Y [37]. Since X 
is also a nonempty convex set, this implies that the set (XG) -1 defined by 

( x a )  -1 = {x �9 X I D x  �9 a }  
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is a nonempty convex set in ~ [37]. Also, from Proposition 2.1, (XG) -1 c_ 
XE. 

Since G is not a face of Y, we may choose points y l  y2 E Y such that either 
yl ~ G or y2 ~ G or both, yet there exists a point g in the relative interior of 
the closed line segment L connecting yl and y2 such that g E G. Then, by the 
definitions of Y and of G, for some x 1 , x 2 E X such that either x 1 r F or x 2 ~( F 
or both, yJ -- Dx j for each j = 1,2. Since g E G N (ri L), we may choose a point 
x E F and a scalar 0 E (0, 1) such that 

g = Dx = 0y 1 -4- (1 - 0)y 2. 

Substituting for yl and y2 in the above, we obtain 

g = Dx = ODx 1 + (1 - O)Dx2 
= n[ox l + ( 1 - O ) x  2] 

= DY, 

where ~ = Ox I + (1 - O)z 2. Since X is a convex set, ~ E X. However, since 
F is a face of X and x I and x 2 do not both belong to F,  the definition of 
implies that ~ i / F .  Furthermore, since ~ E X and D r  = g E G, by definition of 
( X G ) - I , ~  E (XG)  -1. Notice that F ___ (XG) -1. Since y E (XG)  -1, but~ r F,  
it follows that F # (XG) -1. By Definition 4.2, since F is a maximally efficient 
face of X and (XG) -1 is a nonempty convex set in XE that contains F as a strict 
subset, (XG)  -1 cannot be a face of X. 

From [37], since (XG)  -1 is a nonempty convex set, it has a nonempty rela- 
tive interior (vi(XG)-l).  Furthermore, for [37], (ri(XG) -1) is a relatively open 
convex set. Since (ri(XG) -1) is also a subset of X,  this implies by Theorem 
18.2 in [37] that (vi(XG) -1) C_ (ri -if) for some nonempty face T of X.  Because 
(ri(XG) -1) # O, this implies that (ri(XG) -1) fq f f  # O. From Theorem 18.1 in 
[37], since f f  is a face of the convex set X and (XG) -1 is a convex set in X,  it 
follows that (XG)  -1 C_ T.  This implies that T strictly contains F,  since F is a 
strict subset of (XG)  -1. Furthermore, since (XG)  -1 C XE and (ri(XG) -1) is a 
nonempty subset of the relative interior of the face F of X,  Proposition 4.1 implies 
that F is an efficient face of X.  By Definition 4.2, however, this contradicts that F 
is a maximally efficient face of X,  thus proving that G is a face of Y. 

To finish the proof, we must show that the efficient face G of Y is maxim~ly 
efficient in Y. Suppose, to the contrary, that there exists some efficient face G of 
Y such that G C_ G and G r G. Then, from Proposition 2.1 and Theorem 3.4, the 
set/w given by 

P = {x E XlDx E G} 

is an efficient face of X. Notice that if ~ E F,  then ~ E X and Dk E G C_ G. 
This implies that F C_ _F. Furthermore, F # /> must hold, since if F = F were 
true, then any x E X for which Dx E 0 would satisfy x E F and Dx E G, which 
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would imply that G C_ G. This, together with G _c G, would imply that G = G, a 
contradiction to G 7~ G. 

To recap, we have shown that F is an efficient face of X that satisfies F _C /b 
and F ~ F .  This, however, contradicts that F is a maximally efficient face of X,  
so that G is maximally efficient in Y. [] 

Proo f  o f  Theorem 4.5. Let F be an algebraically nondegenerate face of X with 
respect to D. We will show that this implies dim F = dim D[F]. Towards this end, 
let q = dim F.  

First, notice from Remark 3.5 that dim D[F] <~ q. We need only show, then, 
that dim D[F] >>, q. 

We will show that because F is an algebraically nondegenerate face of X with 
respect to D, dim D [F]/> q must hold. Towards this end, notice that since dim F = 
q, we may choose (q + 1) affinely independent vec to r s  xJ,j = 1 , 2 , . . . ,  q q- 1, 

from F.  
Consider the set A of q vectors in 1Rp given by 

A = { D ( x  j - x l ) l j  = 2 , 3 , . . . , q +  1}. 

S u p p o s e t h a t ~ q + l a j D ( x  j - x  1) = 0 for some scalars c~j,j = 2,3,  , q +  1. If j = 2  " " " 
x - ~ q + l  . . we let :~ = l (x  1 - x 1) + z~j=2 ~ j (  z~ - xl),  then this implies that D2 = 0. Notice 

that :~ may also be written 

j = 2  j = 2  J 

which is an element of the set H given by 

H = (aft F )  - {xl}. 

Since H = (sub F )  [37] and D2 = 0, this implies by the algebraic nondegeneracy 
of F that 2 -- 0. By definition of ~:, this means that 

q + l  

 j(xJ - x ' )  = 0. (5) 
j----2 

The affine independence of the set of vectors {x  j IJ = l, 2 , . . . ,  q + 1 ) implies that 
the vectors (xJ - x l ) , j  = 2, 3 , . . . ,  q + 1, are linearly independent. From (5), this 
implies by definition that a j  = 0, j = 2, 3 , . . . ,  q + 1. It follows that set A is a set of 
linearly independent vectors. Therefore, the (q+ l) vectors D x  j , j = 1, 2 , . . . ,  q+ 1, 
in D [F] are affinely independent. By definition, this implies that dim D IF] >/q. 

The arguments so far show that dim D[F] = dim F. From Definition 4.3 
and the fact that any nonempty, strict subface of F must, like F,  be algebraically 
nondegenerate with respect to D, this implies that F cannot collapse under D. [] 
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Proof of Theorem 4.6. The necessity portion of this result follows from the 
proof of Theorem 4.5. To show the sufficiency portion of the result, we will prove 
the contrapositive. 

Assume that F is a nonempty, algebraically degenerate face of X with respect 
to D. Let dim F = q. From Remark 3.5, either dim D[F] = dim F or dim D[F] < 
dim F.  Showing that dim D[F] r dim F,  then, is equivalent to showing that 
dim D[F] < dim F.  To show the latter, we will show that for any set of (q + 1) 
points in F ,  their images under D form a set of (q + 1) affinely dependent points 
in D[F]. Since for any set Q of (q + 1) points in D[F], there must exist (q + 1) 
points in F whose set of images under D precisely equal Q, this will imply the 
desired result, and the theorem will be proven. 

Therefore, let us assume that T = {xJlj = 1,2,...,  q + 1} is a set of (q + 1) 
points in F.  Then T is either an affinely dependent or an affinely independent 
set of (q + 1) vectors. If T is an affinely dependent set, then the definition of 
affine dependence and simple linear algebra can be easily used to show that D[T] 
is an affinely dependent set of (q + 1) points in D[F]. Therefore, let us assume 
henceforth that T is a set of (q + 1) affinely independent points. 

Because F is algebraically degenerate with respect to D, we may choose a point 
C II~ n such that 

# O, (6) 

e (sub F) ,  (7) 

and 

D ~  = 0. (8) 

Since dim F = q and x j, j = 1, 2 , . . . ,  q -t- 1, are affinely independent vectors in 
F,  any point in (aft F )  can be expressed as an affine combination of the vectors 
xJ,j = 1 , 2 , . . . , q  + 1. From [37], since x 1 E (aft F) ,  this implies that any 
point in (sub F)  can be expressed as the algebraic difference between some affine 
combination of the points x j, j = 1 , 2 , . . . ,  q + 1, and xl. In particular, from (7), 
this implies that for some scalars aj , j  = 1 , 2 , . . . ,  q + 1, whose sum is one, 

q+l 
Z-.~- [~_o~jxJ  I - - x  1. 

\ j = l  ] 

By rearranging the right-hand side of this equation and using the fact that the scalars 
(~j,j = 1,2,.. . ,  q + l, sumto  one, we obtain 

q+l 
-~ __ ~ ~ xj  -- xl) .  

j : 2  
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This, from (6) and (8), implies that 

qd-1 

_ x ' )  = o 

j=2 
(9) 

and 
q+l 

Z O/'J(XJ -- x l )  # 0. 
j=2 

From the latter inequality, it follows that a j , j  -- 2, 3 , . . . ,  q + 1, cannot all equal 
zero. From this and (9) it follows that the vectors ( DzJ - Dx 1), j = 2, 3 , . . . ,  q + 1, 
are linearly dependent. Therefore, {DxJIj  = 1 ,2 , . . . ,  q+ 1} = D[T] is an affinely 
dependent set of (q + 1) vectors in D [F], and the proof is complete. [] 
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